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Secondary solitary wave formation in systems with generalized Hertz interactions
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~Received 12 April 2001; revised manuscript received 12 April 2002; published 30 July 2002!

We consider a chain of monodisperse elastic grains of radiusR where the grains are barely in contact. The
grains repel upon contact via the Hertz-type potential,V}dn, n.2, whered>0, is the grain-grain overlap,
d[2R2(ui 112ui), whereui denotes the displacement of graini from its original equilibrium position. This
being a computational study, we considern to be arbitrary. Our dynamical simulations build on several earlier
studies by Nesterenko, Coste, and Sen and co-workers that have shown that an impulse propagates as a solitary
wave of fixed spatial extent,̀ ,L(n),1, through a chain of grains. Here, we develop on a recent study by
Manciu, Sen, and Hurd@Phys. Rev. E63, 016614~2001!# that shows that colliding solitary waves in the chains
of interest spawn a well-defined hierarchy of multiple secondary solitary waves~SSWs! that carry;0.5% or
less of the energy of the original solitary waves. We show that the emergence of SSWs is a complex process
where nonlinear forces and the discreteness of the grains lead to the partitioning of the available energy into
hierarchies of SSWs. The process of formation of SSWs involves length scales and time scales that are
controlled by the strength of the nonlinearity in the system. To the best of our knowledge, there is no formal
theory that describes the dynamics associated with the formation of SSWs. Calculations for cases where the
Hertz-type potential can be symmetric in the overlap parameterd, i.e., whered can be both positive and
negative, suggest that the formation of secondary solitary waves may be a fundamental property of certain
discrete, nonlinear systems.

DOI: 10.1103/PhysRevE.66.016616 PACS number~s!: 46.40.Cd, 45.70.2n, 43.25.1y
rs
v
-
th
an
ha
he
r-

am
ro
ic
ls
h
e

i
rt

ar
g
t b
ca
te
al
te
th
in
ra
s
d

s

rd-
hat
ak,

ls,
of

ied

ri-

al

the
in

i-
hain
cal
ly
ay

ck-

nts

rry
f

d in
-

.
the

-

ics
I. INTRODUCTION

The study of impulse propagation in a monodispe
chain of coupled elastic grains, which repel upon contact
the Hertz potential@1#, can exhibit interesting nonlinear dy
namics@2–5#. In the absence of external loading between
grains, the grains are barely in contact. It turns out that
impulse propagates as a solitary wave through such a c
of elastic grains@2–6#. The presence of loading destroys t
solitary wave@2,3,7# and the solitary wave becomes dispe
sive as a function of the magnitude of loading@3#. The nature
of dispersion is sensitive to the competition between the
plitude of the impulse and loading. Therefore, the ze
loading case is one of the most interesting regimes in wh
one can probe the nonlinear dynamical problem of impu
propagation in chains of elastic beads in contact. In t
work, we consider monodisperse chains in the absenc
external loading between the grains.

It should be mentioned here that for spherical grains
contact and for grains with conical imperfections, the He
potential is able to describe the interactions@1,8#. The Hertz
potential describes power-law repulsion when grains
compressed and have no interaction otherwise. One can
eralize the Hertz potential to study cases, which may no
easily realized in the laboratory and such an exercise
serve as a valuable tool to probe the general class of sys
that interact via short-range power-law repulsive potenti
Examples of not easily realizable cases include Hertz po
tial with arbitrary power-law exponents and cases where
repulsive potential is introduced not only when the gra
squeeze against each other but also when they are sepa
i.e., a symmetric version of the Hertz potential. We call the
cases Hertz-type potentials. These cases were not studie
Hertz in the context of elastic grains but are nevertheles
1063-651X/2002/66~1!/016616~11!/$20.00 66 0166
e
ia

e
y
in

-
-
h
e
is
of

n
z

e
en-
e
n

ms
s.
n-
e

s
ted,
e
by

of

interest from the standpoint of nonlinear dynamics. Rega
less of the details of the Hertz-type potential, it turns out t
in the absence of loading, any impulse, no matter how we
generates solitary waves in the chain of elastic grains@1–6#.

It is well known that continuous wave acoustic signa
which can be obtained by sending an impulse in a chain
elastic grains under external loading, backscatter off bur
inclusions in the chain of Hertzian grains@9#. In the absence
of such loading, solitary waves also backscatter off impu
ties or inclusions in Hertzian chains@3#. Backscattering of
solitary waves from buried inclusions in three-dimension
~3D! granular beds exhibit unusual behavior@10#. In the
present study, we focus on an important idealization of
problem of backscattering of solitary waves, namely, one
which two identical solitary waves traveling in opposite d
rections meet one another at the geometric center of a c
with an odd number of grains. This problem is also identi
to that of backscattering of a solitary wave from an infinite
massive impurity at the center of a chain and hence m
reveal insights into the study of the general problem of ba
scattering of solitary waves from impurities@4#.

This article is arranged as follows. Section II first prese
the details of the model system~Sec. II A! and next summa-
rizes the details of the integration algorithms used to ca
out the calculations~Sec. II B!. The studies on the crossing o
solitary waves in a chain of discrete grains are presente
Sec. III. In Sec. III A we discuss our simulations that dem
onstrate the spawning of secondary solitary waves~see Man-
ciu and co-workers@4#!. This section is followed by Secs
III B and III C, where we present detailed discussions on
formation of secondary solitary waves@4# for the one-sided
Hertz-type potential@1# and for symmetric versions of Hertz
type potentials@see Eqs.~1! and ~2! below#, respectively.
Very little is presently known about the detailed dynam
©2002 The American Physical Society16-1
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FELICIA S. MANCIU AND SURAJIT SEN PHYSICAL REVIEW E66, 016616 ~2002!
leading to the formation of secondary solitary waves. Co
putational limitations remain an important issue when stu
ing the long time and spatial correlation effects that are ty
cally associated with the formation of these objects. In S
IV, we summarize the present study.

II. MODEL SYSTEM AND ANALYSES

A. The model system

We consider a linear system of macroscopic, monod
perse beads of massm and radiusR. We letE ands denote
the Young’s modulus and the Poisson’s ratio, respectiv
We assume that two such beads repel upon intimate con
according to Hertz’s law@1#. We define the overlapd i ,i 11
[D2(ui 112ui), where ui denotes the displacement o
grain i from the equilibrium position andD52R2h, h be-
ing the loading of the chain~grain compression prior to th
generation of the impulse!. For spherical beads, the repulsiv
Hertz potential@1# is given by

V~d i ,i 11!5~ 2
5 D !~R/2!0.5d i ,i 11

n [ad i ,i 11
n if d i ,i 11>0

[0 if d i ,i 11,0,
~1!

whereD[ 3
2 ($12s2%/E) and n5 5

2 . If n→2, the repulsive
force approaches the harmonic limit (n52). In general, the
constanta depends upon the material parameters~E ands!
and the magnitude ofn depends upon the contact geome
between the beads. It turns out that typicallyn varies be-
tweenn5 5

2 and 3@8#. We assume that the signal propaga
through each grain at a speed that is significantly slower t
the velocity at which sound wave propagates through e
bead. We also ignore the energy lost to internal degree
freedom in each grain, i.e., we ignore restitutive losses. R
titutional loss leads to exponential attenuation of the am
tude of the propagating pulse and can be incorporated
the analyses. However, our studies show that restitutio
losses~modeled as outlined above! do not affect the width of
the solitary wave but simply attenuates the amplitude o
propagating solitary wave in an exponential manner. It
therefore convenient to ignore such losses and treat our
tem as a conservative system for our present object
namely, for studying the dynamics of secondary solita
waves. Due to the nonlinear nature of the repulsion betw
adjacent grains, one might expect that dynamical phenom
involving compression and decompression of grains wo
be highly nonlinear in nature. Since the Hertz potential
asymmetric, additional effects occur because the grains
lose contact for periods of time. In order to probe the effe
of nonlinearity alone, we also studied the problem with t
interaction described by a symmetric Hertz potential,

V~d i ,i 11!5aud i ,i 11un. ~2!

The equation of motion of some beadi ~excluding the
edge grains! in a finite chain of Hertzian beads is given b

md2ui /dt25na$@D2~ui2ui 21!#n21

2@D2~ui 112ui !#
n21%. ~3!
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Initially, every grain is placed barely in touch with on
another such thatD52R. We call this the no-loading case
An impulse defined by an initial velocityv0 at time t50 is
initiated at the first bead@2,3#. As the impulse propagates
one finds via numerical, experimental, and analytical stud
that a solitary wave develops in space and time@2–6#.

We outline the procedure for constructing an approxim
solution forui(t) in Eq. ~3!. With reference to earlier studie
@3–7# and the results from numerical simulations, we start
assuming that our system admits a solitary wave solut
We further assume that the displacement of individual gra
from equilibrium positionui(t) are continuous functions o
time but are defined only at discrete positionszi . Since the
solitary wave is nondispersive, we can assume that this
placement can be obtained from a wave-type continu
function of both space and time, from the relation

ui~ t !5u~zi ,t !5u~zi2ct!5u~a! with a5z2ct,
~4!

wherec is the constant velocity of the solitary wave.
Our exhaustive numerical studies on Eq.~3! and also

other work indicate that, for a givenn, the shape of the
solitary wave in space does not depend on the solitary w
amplitude. This implies that the functionu is described by
u(a)5Acn(a), where A represents the amplitude of th
solitary wave and where one can setA5u(2`)2u(1`)
51. The quantitycn(a) is an unknown generic function tha
describes the shape of the solitary wave and is expecte
depend upon the indexn, which controls the stiffness of the
potential. Because the solitary wave is localized in spa
cn(a) should be necessarily zero fora→` ~z→` for finite
t, which represents a region that the solitary wave is ye
reach! and 1 fora→2` ~where grains have attained a ne
equilibrium position after the passage of the compress
produced by the tsunami-like or kink solitary wave!. A func-
tion that respects this boundary condition and can only t
intermediate values between 0 and 1, can be always wri
as

cn~a!51/~11exp!@ f n~a!#, with

f n~a!5 ln@1/cn~a!21#. ~5!

With this notation, the solitary wave function becomes

u~a!5A/2@wn~a!11# with wn~a!5tanh@ f n~a!/2#.
~6!

One can see from Eqs.~4!–~6! that du/dzu t5
2(1/c)du/dtuz . Substituting Eq.~6! into Eq.~3!, we get, for
t50,

mc2/na~A/2!n225@$wn~z22R!2wn~z!%n212$wn~z!

2wn~z12R!%n21#/@d2wn /dz2#

[C0~n!, ~7!

where the left-hand side is independent ofz and the right-
hand side is independent ofm, a, andA. Thus,C0 should be
6-2
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SECONDARY SOLITARY WAVE FORMATION IN . . . PHYSICAL REVIEW E66, 016616 ~2002!
independent ofz, m, a, and A, which means thatC0 is a
constant that depends only onn.

Equation~7! implies thatwn(z) is antisymmetric with re-
spect toz50, which is the center of solitary wave~recall that
t was set to zero!. This fact, combined with the asymptot
limits for cn(z) and Eq.~5! indicates that

f n~z!5 (
q50

`

C2q11~n!z2q11. ~8!

Since the functionwn(z) does not depend upon the so
tary wave amplitude or material parameters~except for inter-
action powern!, knowledge of the coefficientsC0 , C1 , C3 ,
C5 ,..., will completely solve the problem of pulse propag
tion for any system supporting this type of solitary wave.
the absence of a simple analytical approach for inferringC0
andC2q11 , one must resort to numerical methods for co
puting these coefficients.

Recall that Eq.~7! implies that

c5$naC0~n!/m%1/2~A/2!~n22!/2, ~9!

which implies that the propagation velocity of the solita
wave scales with its amplitude except whenn→2, the har-
monic limit, wherec becomes independent of amplitude,
expected. As we shall see, the velocity of the solitary wa
become very weakly dependent onn asn→2.

The width of the solitary wave,L(n), turns out to be
sensitive ton and to the grain diameters. When one consid
monodisperse chains,n is the only parameter that contro
the width of the solitary waves. Whenn→`, L(n)→1.
Whenn→2, L(n)→`, i.e., the system no longer accomm
dates a solitary wave@2,4#. The behavior ofL(n) vs n is
illustrated in Fig. 1~c!. For the most common case withn
between 2.5 and 3, the solitary waves are about three g
diameters wide.

B. The integration algorithm

The calculations reported in this study have been car
out using the sixth-order Gear predictor-corrector algorit
@11#. In our numerical calculations we usedm51, a51, v0
51 ~imparted initial velocity!. Observe that in a system wit
no external loading, the repulsive forces are purely nonlin
and Eq.~3! cannot be linearized. In all of our studies r
ported in Secs. III B and III C, the chains have 999 grains a
the integration time step used isdt51.331022 for the asym-
metric potential anddt59.7531023 for the symmetric po-
tential. The time step used was identical for studies for
values ofn. In all of our calculations, the number of tim
steps was 100 000. The total energies during the runs w
typically constant to an accuracy of about 0.02%.

Two identical solitary waves are created by imparting
same initial velocity~v0 and2v0! to the first and last grains
of the chain. The symmetry with the central grain is alwa
preserved, which implies that the central grain is always
rest for all the simulations. The problem is identical to that
backscattering of a solitary wave by a grain with infin
mass.
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III. THE CROSSING OF IDENTICAL SOLITARY WAVES

A. Secondary solitary waves

We first summarize the study in whichtwo solitary waves
of the same amplitude but opposite displacements are i
ated at the two ends of a chain with 499 grains. The sys
is set up in such a way that the solitary waves meet
another at thecenterof the central grain of the chain, i.e., a
grain number 250. It should be mentioned that the result
collision between solitary waves may be slightly different
they do not collide at the center grain but at an arbitra
point along the line joining a grain center to the contact po
between two grains. Systematic studies on ‘‘off-center’’~i.e.,
symmetry broken! collisions, which are more challenging t
probe than the current study in which only grain centers
involved, will be carried out at a later stage.

An important question to address is whether at the po
of intersection, the opposing solitary waves ‘‘cancel ou
i.e., whether the center of the central grain suffers any m
tion at any time. In earlier numerical analyses of limite
precision carried out by Nesterenko@2#, it was found that the
solitary waves underwent perfect annihilation at the point
crossing. As we shall see, improved resolution of the cal
lated data reveals that there is no motion of the central g
at any time and that there is significant motion of the elas
grains in the immediate vicinity of the central grain. Figu
1~a! shows a drawing of the process of collision between t
opposite propagating solitary waves in a chain of elas
grains.

In Fig. 1~b!, we present the kinetic energy versus distan
~measured in grain diameter! and time. One can see that th
grains that are adjacent to grain number 250 begin to os
late or ‘‘rattle,’’ breaking mutual contact and reestablishi
contact again in the process. Such rattling eventually gi
rise to the generation of multiple solitary waves of progre
sively diminishing amplitudes, which move at progressive
slower velocities. We call these waves, ‘‘secondary’’ solita
waves~SSWs!.

The process of formation of SSWs involves a comp
sequence of grain-grain compressions between two, th
and perhaps more adjacent grains in certain time sequen
These processes remain to be analytically resolved. H
ever, it is possible to develop some intuition about the f
mation of SSWs via the following arguments that are ba
upon a simplified description of the dynamics of grains in t
immediate vicinity of the collision point. Assume that a so
tary wave hits an infinitely massive central grain, say gr
numberN11 in a 2N11 grain chain. We recall from the
discussion in Sec. II A that a typical solitary wave in a cha
of spherical grains withn52.5 is about three grain diamete
wide with the bulk of its energy at the geometric center
the solitary wave. As the solitary wave impinges upon t
central grain, theNth grain would simply reflect off the (N
11)th grain. However, the grain that is two grains ap
from the center of the (N11)th grain would not suffer such
a reflection after a time 2R/c ~wherec is the speed of the
entire solitary wave!. GrainN21 would continue to squeez
grainN when grainN might be moving in opposition to grain
N21 with an acceleration that is controlled by the reflecti
6-3
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FELICIA S. MANCIU AND SURAJIT SEN PHYSICAL REVIEW E66, 016616 ~2002!
against grainN11. While one can pursue the grain dynami
in this fashion, it is clear that the time scales associated w
the compression of grains during the propagation of a s
tary wave of finite size is significantly altered by the pre
ence of the static central grain. Given that in a chain
grains interacting via the Hertz potential, any perturbat
must propagate as a solitary wave, the original solitary w
must be destroyed by the central grain and will have to
reconstructed. This process of reconstruction of the orig
solitary wave leads to the formation of the reflected solit
waves and SSWs.

B. Complex hierarchies of secondary solitary waves:
Asymmetric Hertz-type potentials

We study the formation and propagation of second
solitary waves in monodisperse Hertzian chains. The an
ses are shown by recording the maximum compression
tween any two adjacent grains and the maximum velocity
the grains as functions of time. The data are shown in F

FIG. 1. ~a! The drawing shows the central part of a chain
elastic beads. The center grain is dark. The velocities of the
opposite propagating solitary waves are shown. The data point
obtained from dynamical simulations and the continuous fits
obtained using the solution to the equation of motion in Sen
Manciu in Ref.@4#. ~b! The plot shows kinetic energy along thez
axis and time and space~in terms of grain diameter or grain num
ber! alongx andy axes, respectively. Two solitary waves collide
the center of grain number 250 in a chain of 499 grains. The em
gence of the first two secondary solitary waves can be seen.
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2–6. In each case, the upper panel@labeled~a!# shows data
on the maximum compression between any two adjac
grains as a function of time. The lower panel@labeled~b!#
shows data on the velocities of the grains. It turns out tha
is difficult to meaningfully represent the data when the ma
nitude of some dynamical variable~such as position or ve
locity! as a function of space and time is being shown wi
out making three-dimensional plots. It turns out that thre
dimensional plots tend to be too complicated to decipher
detailed dynamics of the system being probed. To keep
presentation simple, we record the minimum distance
tween the adjacent grains along they axis and place circles
of appropriate diameter to indicate the window within whi
the magnitude of the grain-grain distances lie~please refer to
Table I!.

In a Hertzian chain with zero loading, the propagation
the solitary wave can be tracked either by recording
maximum velocity of the particle or the maximum compre
sion between the grains. In our simulations, we first consi
the case where the Hertz-type potential is such that it p
duces a steep repulsion upon compression. To achieve su
steep repulsion, we setn53, in other words, we make th
potential more abruptly repulsive than the usual case on
5 5

2 for spherical grains in contact. These data are shown
Fig. 2. It turns out that the width of the solitary wave
slightly larger than a single grain diameter forn53 @4#.

Before the collision, these points yield the line with th
negative slope at the left of each of the panels in Figs. 2~a!–
6~a!. In each of these figures, this negatively sloped line r
resents theincoming solitary wavetowards the center of the
chain as a function of time. The data reveal that the slope
the incoming wave becomes smaller asn is lowered from 3.0
to 2.1. This result implies that the solitary wave moves p
gressively slower asn is lowered in magnitude@see Eq.~9!#.
The part of the solitary wave that is ‘‘reflected’’ at the coll
sion point by the infinitely massive center is clearly visible
the immediate right of the incoming solitary wave in Fig
2~a!–6~a!. The reflected wave possesses very nearly
same magnitude as the incoming wave. Nevertheless,
incoming and reflected waves are not perfectly symme
with respect to the normal dropped onto the time axis at
point of collision, thereby indicating that the incoming an
reflected solitary waves have slightly different velocitie
The asymmetry can be readily seen in the Figs. 2~a!–6~a!.
The calculations suggest that the part of the kinetic ene
that is not available to the reflected solitary wave ends
being used to make SSWs.

The data in Figs. 2–6 clearly show that after the collisi
between two identical solitary waves~or the reflection of a
solitary wave from an infinite central mass!, some energy
remains temporarily localizedin the immediate vicinity of
the point of collision. The localization time increases asn
→2, eventually becoming divergent in the limitn52, where
L(n)→`. This localized energy leads to the rattling of th
grains starting from the immediate vicinity of the collisio
point. The process of rattling lasts across extended time
length scales, controlled byn. The process of multiple colli-
sions between the grains as the grains lose and regain co
in the immediate vicinity of the collision point leads to th

o
re
e
d

r-
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SECONDARY SOLITARY WAVE FORMATION IN . . . PHYSICAL REVIEW E66, 016616 ~2002!
formation of the secondary solitary waves. Given that typi
solitary waves forn between 3 and 2.5 or so are about thr
grain diameters wide, three-grain motion in unison is nec
sary for the system to construct SSWs. The evolution of s
correlated motion depends uponn and hence the formation
and propagation of SSWs as shown in Figs. 2~a!, 2~b! to
6~a!, 6~b! are so stronglyn dependent. It turns out that i
softer potentials, the contact period between the grains
typical collision is more long lived than forn52.5 and 3.
Thus, systems with softer potentials yield more SSWs@2–6#.
Of course, while the SSWs have the same width as the
mal solitary waves in Hertz chains discussed in Sec. II, th
amplitudes are much smaller and hence they propagate m
slowly @see Eq.~9!# compared to the amplitudes of the orig
nal solitary waves that produce these secondary soli
waves. Since the velocities of the SSWs are dependent u
their amplitudes, they correspondingly move more slow
than the solitary waves. In most of our studies, we find t
the energy trapped in the secondary solitary waves is a
0.5% of the original energy associated with the two collidi
solitary waves@4#.

FIG. 2. We show half of a chain of 999 grains. Incoming solita
wave ~negative slope line on the left of the panel! backscatters off
the center of the chain and makes some 11 SSWs of decrea
amplitudes, moving at progressively slower speeds. In~a!, the com-
pression pulses are characterized by smallest distance betwee
jacent grains described byui 11(t)2ui(t)u(minimum value) . When the
magnitude of compression between two adjacent grains lie with
chosen range~see Table I!, we record the compression with th
appropriate symbol. In~b! the same system is shown by plotting th
relative velocities of each grain with respect to the one in fr
versus time.
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If one looks at the velocity extrema plots in cases wh
the one-sided Hertz potential is considered, meaning the
in which the grains do not interact when they lose cont
@Figs. 2~b!–6~b!#, the data reveal that it takes secondary so
tary waves several time units to form after the collisi
event. This is due to the fact that the grains lose contact a
the collision and move with constant velocity between in
vidual impacts. In order to have an extremum in velocity,at
least three grains should be in contact simultaneously. On
the other hand, minima in the distances between the adja
grains represent impacts between individual grains, reg
less of the position of the other grains of the chain. It
evident that it takes sufficient time and sufficient number
grain-grain collisions to make secondary solitary waves,
we have emphasized above.

In the vicinity of the collision point, the extrema appea
to be somewhat random, which suggests that the motio
the adjacent grains after the crossing of the solitary wave
presumably highly complex in nature. However, after a c
tain period of time, the system accommodates the availa
energy into a hierarchy of secondary solitary waves. Whe
secondary solitary wave is completely formed, the maxi

ing

ad-

a

t

FIG. 3. The information represented is the same as in Figs.~a!
and 2~b! except that we study the case withn52.5. Physically,n
52.5 corresponds to a chain of spherical beads. Softening of
potential allows for the production of many more SSWs. Obse
that both forward and backward propagating SSWs form in t
system.
6-5
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FELICIA S. MANCIU AND SURAJIT SEN PHYSICAL REVIEW E66, 016616 ~2002!
are again organized on a line, whose slope is related to
velocity of the secondary solitary wave and hence to
solitary wave energy@4#.

In Fig. 3, we report calculations carried out for the ca
n52.5. The lower value ofn implies that the Hertz-type
potential is less repulsive than for then53 case. Compari-
son with the data in Fig. 2 readily reveals that many mo
secondary solitary waves are formed across a long perio
time, which is an expected result when the repulsive pot
tial is softened, thereby making it easier for three grains
collide in such a way that SSWs can form more frequen
Figure 3~a! shows data in which the compressions betwe
the adjacent grains are presented as a function of time.
ure 3~b! shows the grain velocities as a function of time f
the study shown in Fig. 3~a!. The data in the upper and lowe
panels reveal interesting branching features, which indic
that SSWs can be generated from SSWs themselves~see, for
example, data points att;500, grain number;20, t;700,
grain number;80, etc.!. It should be noted that SSWs, onc
formed, move at fixed velocities that depend upon their a
plitudes according to Eq.~9!. Thus, when one plots the mini
mum distance between the adjacent grains as a functio
time, one is tracking the propagation of a compression pu
and hence the emergence and the propagation of a SSW

FIG. 4. The information represented is the same as in Figs.~a!
and 2~b! except that we study the case withn52.3. Physically,n
52.3 corresponds to a chain of spherical beads. Softening of
potential allows for the production of many more SSWs. Loweri
the value ofn leads to slower velocities@see Eq.~9!# of the SSWs.
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plot of the minimum distances between adjacent grains v
sus time as shown in Figs. 2~a!–6~a! shows linear trajecto-
ries beyond some time after their formation. The tendency
the trajectories to make progressively smaller angle with
spect to the time axis reveals that the majority of the solit
waves that form at late times move more slowly than tho
that form at earlier times. There are cases when fairly str
SSWs form at late times@see Figs. 4~a! and 5~a!# and inter-
sect the slower moving weaker waves that may have form
earlier. Our calculations appear to suggest that we find SS
as they are forming.

Continuing in the same way, one expects that the proc
of generation of secondary solitary waves would beco
progressively more complex asn decreases. Figures 4~a!,
5~a!, and 6~a! present grain-grain compression and grain v
locity data forn52.3, 2.2, and 2.1, respectively. It is com
putationally difficult to carry out calculations in the vicinit
of the harmoniclike (n→2) limit. The softness of the poten
tial leads to extended time scales across which the adja
grains are in contact, and in turn leads to extended time
length scales across which large numbers of SSWs can fo
Figure 6~a! suggests that weak SSWs that propagate in
direction of the original incoming solitary wave may also
formed. Furthermore, after formation, these waves move
ceedingly slowly and take a relatively long time to ma
SSWs. In the absence of a lower limit on the energy carr

he

FIG. 5. The information represented is the same as in Figs.~a!
and 2~b! except that we study the case withn52.2. Softening of the
potential allows for the formation of more dominant SSWs.
6-6
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SECONDARY SOLITARY WAVE FORMATION IN . . . PHYSICAL REVIEW E66, 016616 ~2002!
by a SSW, it is likely that secondary solitary waves contin
to spawn indefinitely from the point of crossing of two so
tary waves.

There is no simple scaling behavior that we are able
identify that can be used to describe the hierarchy of ma
tudes of these secondary solitary waves versus the sequ
of the solitary wave. If one considers Fig. 4~a! or 4~b! and
draws a horizontal line, starting, say, at grain number 200
is evident that there are large amplitude solitary waves
form at late times. The data in Figs. 5 and 6 present conv
ing evidence of formation of large amplitude secondary s
tary waves at late times, i.e., after the formation of ma
weak SSWs. For any given value ofn there are varied time
scales across which SSWs can form. Formation of SSW
not a simple, scale invariant, sequential process.

C. Complex hierarchies of secondary solitary waves:
Symmetric Hertz-type potentials

In this section, we study the process of crossing of t
identical, opposite-propagating solitary waves in the ‘‘sy
metric Hertz-type potential’’ as described via Eq.~2!. This
potential allows for a nonvanishing force even when t
adjacent grains are not in contact with one another~much
like in a harmonic potential except that the potential is no
linear!. As stated earlier, we keep the loading parameteh
50. The change in the potential allows for the propagat
of both solitary waves and antisolitary wavesin the system,

FIG. 6. The information represented is the same as in Figs.~a!
and 2~b! except that we study the case withn52.1, the closest cas
to the harmonic limit (n52) that we could study in detail. With
decreasingn it is evident that the SSWs tend to propagate at v
nearly the same velocity. In the limitn→2, all excitations are ex-
pected to move at the same speed.
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where by a solitary wave one implies a compression pu
and by an antisolitary wave one means dilation pulse.

One expects different behavior during the collision b
tween two opposite propagating solitary waves in this s
tem. Of course, as we have seen above, interactions betw
solitary waves in these discrete systems spawn SSWs. In
symmetric problem, in addition to the secondary solita
waves, the system also spawns secondary antisolitary w
~SASWs!. Figures 7 (n53), 8 (n52.5), 9 (n52.3), 10 (n
52.2), and 11 (n52.1) describe the dynamical behavior
the distance between adjacent grains versus time when
tary waves @Figs. 7~a!–11~a!# and antisolitary waves are
formed@Figs. 7~b!–11~b!#. Observe that there is no incomin
antisolitary wave in Figs. 7~b!–11~b!. The magnitudes of the
displacements and velocities are qualitatively indicated
terms of solid~for solitary waves and SSWs! and open~for
antisolitary waves and SASWs! circles and via their respec
tive gray scales. Table I also explains the magnitudes a
ciated with the gray scale that has been used. The dynam
evolution of maximum compression between adjacent gra
as a function of time turns out to be a more accurate indica
of time evolution in the symmetric systems.

It is interesting to see that in all of the Figs. 7–11, t
symmetry of the potential allows the formation of forwa
propagating SSWs~i.e., moving in the same direction as th
original solitary wave that hit the infinite wall in the ha

y

FIG. 7. As in Fig. 2~a!, in both the panels we show the proce
of collision of two opposite propagating solitary waves by depicti
half of a 999 grain chain where the grains interact via the symme
Hertz potential@Eq. ~2!# for n53.0. Figure 7~a! shows the dynam-
ics of SSWs while Fig. 7~b! shows the dynamics of SASWs. Th
SSWs and SASWs show almost identical propagation patte
stemming from the fact that SSWs and SASWs form in pairs.
6-7
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FELICIA S. MANCIU AND SURAJIT SEN PHYSICAL REVIEW E66, 016616 ~2002!
chain! and backward propagating SSWs~i.e., moving in the
direction opposite to that of the original solitary wave that
the infinite wall in the half chain!. To see the backward
propagating secondary solitary waves, the reader may
the negatively sloped lines in Figs. 7~a!–10~a!. These de-
tailed features are smoothened and largely outside the r
of data shown for the casen52.1 in Fig. 11, in which the
spatial width of the solitary wave is rather large. The rap
increase inL(n) betweenn52.2 andn52.1 bears testimony
to the significant differences in the two figures. Identical fe
tures are also visible forantisolitary waves. The number o
SSWs and SASWs generated grows rapidly to form conti
umlike structures in the graphs asn→2 @see, for instance
Figs. 10~a!, 10~b!, 11~a!, and 11~b!#. The process of forma
tion of secondary solitary and antisolitary waves beco
progressively more short ranged and hence in rapid inter
asn decreases. Examination of long-range and late-time d
on SSWs and SASWs reveal that the dynamical behavio
individual grains far from the collision point is, for all prac
tical purposes, chaotic.

IV. DESCRIPTION OF A TYPICAL TRAJECTORY
OF COMPRESSION PULSE

In Fig. 12 we have reexamined the data describing
process of formation of the first seven SSWs for a spec
case, namely,n52.2 case shown in Fig. 5~a!. We have ex-
tracted the points that record the maximum compression

FIG. 8. The information presented is identical to that in Fig
7~a! and 7~b! except thatn52.5. As in Fig. 3, softening of the
potential introduces more SSWs and SASWs in the post collis
era.
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tween the adjacent grains as a function of time and space
each SSW that we study. According to the discussions p
sented in Sec. II A, the maximum compression is a fix
number for a given SSW. The data shows that initially t
maximum compression between the grains behaves as a
linear function. In time, the compression pulse starts
propagate at constant speed and becomes a propagating
tary wave. We have fitted the data for each SSW with
time-dependent function that possesses a linear piece in
and a hyperbolic function in time. The linear piece in time
introduced to model the observed behavior that the comp
sion pulses must propagate at uniform speeds, if they ar
be identified with solitary waves. The formation of a com
pression pulse, as seen in constructing solution to the e
tion of motion of the grains@4,6#, is best described by a
tanhf(t) function. A functional form that is consistent wit
the properties associated with the displacement of the gr
as alluded to in Eq.~6! and that fits the data is

ui 11~ t !2u1~ t !uminimum value

5I 1P1~ t2t0!2P2 tanh@P3~ t2t0!#, ~10!

whereP1 , P2 , andP3 are constants that vary with the ord
of the solitary wave. The constantt0 represents the time o
collision between the two solitary waves.

Table II presents the values of parameters as a functio
the order of the solitary wave. The first five secondary so
tary waves are well formed in the data displayed. Table

.

n

FIG. 9. The information presented is identical to that in Fig
7~a! and 7~b! except thatn52.3. The data reveals that at later tim
there are phases~e.g., betweent;600 and 900 ns, grain number
1–40 and beyond! in which the system makes only SASWs.
6-8
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SECONDARY SOLITARY WAVE FORMATION IN . . . PHYSICAL REVIEW E66, 016616 ~2002!
reveals that the coefficientP1 decreases linearly for the firs
five SSWs with the order of the SSW, thus reconfirming t
the secondary solitary waves of higher order propagate m
slowly. The sixth and seventh SSWs are still in the proces
formation att;900 and grain diameter 100 and hence
coefficientsP1 , P2 , andP3 for these cases cannot be com
pared with those for the first five SSWs. The coefficientP2
controls the early time dynamics of the compression pu
In cases where the compression pulse rapidly assumes p

FIG. 10. The information presented is identical to that in Fi
7~a! and 7~b! except thatn52.2. The resolution of our data sugges
band formation of the SSWs and SASWs.

TABLE I. Magnitude of relative displacements and velocities
grains in arbitrary units for solitary waves~dark circles! and anti-
solitary waves~open circles! shown in Figs. 2–11.

d . 131021

131023 , d , 131021

531024 , d , 131023

131024 , d , 531024

131027 , • , 131024

s . 131021

131023 , s , 131021

531024 , s , 131023

131024 , d , 531024

131027 , • , 131024
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gation at uniform speed,P2 is the weakest. SSWs 6 and 7 d
not end up propagating at uniform speeds in Fig. 12, whic
evident if one observes the fitted curves having one’s line
vision aligned with the data points. The coefficientP3 con-
trols rate of growth of the curves at early times and is anom

. FIG. 11. The information presented is identical to that in Fig
7~a! and 7~b! except thatn52.1. In the region near the collision
point, the formation of SSWs and SASWs reveal different featu
whereas their propagation behavior is similar at larger distan
from the collision point.

FIG. 12. Data showing the spatiotemporal evolution of the fi
seven secondary solitary waves in then52.2 case. The fitted curve
are discussed in the text.
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TABLE II. Least squares fits using Eq.~10! for data presented in Fig. 12.

x2 P1 P2 P3

Sec. Sol. 1 0.006 56 0.857 416 0.000 32 7.304 296 0.026 23 0.079 146 0.000 93
Sec. Sol. 2 0.011 68 0.8136 0.000 45 12.027 226 0.041 99 0.054 46 0.000 52
Sec. Sol. 3 0.015 9 0.773 036 0.000 55 18.022 16 0.059 84 0.039 356 0.000 3
Sec. Sol. 4 0.030 96 0.733 616 0.000 88 28.573 096 0.119 85 0.025 646 0.000 19
Sec. Sol. 5 0.081 09 0.692 546 0.002 09 53.303 246 0.417 91 0.013 286 0.000 11
Sec. Sol. 6 0.791 08 0.807 16 0.028 3 201.151 286 13.414 51 0.003 936 0.000 14
Sec. Sol. 7 0.856 45 0.780 136 0.026 33 180.471 646 11.822 19 0.004 216 0.000 15
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lously dominant for the two weakest secondary solita
waves. These are the reasons why the coefficientsP1 , P2 ,
and P3 for these two cases do not follow the trend esta
lished by the first five secondary solitary waves.

V. SUMMARY AND CONCLUSION

In this paper we have presented a study of the dynam
processes associated with the collision of two oppo
propagating solitary waves in 1D systems with the gra
interacting via asymmetric Hertz-type@1# potentials and via
symmetric Hertz-type potentials. The studies have been
ried out under conditions of zero external loading of t
chains. In systems with Hertz-type potentials, it is possible
generate compressive pulses, i.e., pulses in which the
tance between the grains attain a minimum, which in t
propagates through the chain at a constant speed. Su
compression pulse turns out to be a solitary wave. The sp
depends upon the amplitude of the pulse via Eq.~9!. In sys-
tems with asymmetric Hertz-type potentials, it is possible
generate both compression and dilation pulses. The dila
pulse turns out to be an antisolitary wave.

Our calculations have been carried out by numerica
integrating the equation of motion for each grain for each
these potentials. The computations involved were perform
with extremely high precision and were carried out ove
decades in time steps to ensure that the smallest and
slowest moving energy bundles could be detected in
studies. Figures 2~a!–6~a! show the data obtained by recor
ing the maximum compression between the adjacent gr
.
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~some fixed number! as functions of space and time, befo
and after the collision of two identical, opposite propagati
solitary waves. The grain velocities are plotted as functio
of time in Figs. 2~b!–6~b!.

Our data indicate that after the collision between tw
identical solitary waves, a small part of the total energy
the two original solitary waves remains in the collision poin
This energy then starts to spread outward in both directio
These nonlinear physical systems automatically partition
energy into a hierarchy of SSWs, which form over extend
time and length scales in an overall decreasing order in m
nitude. Thus, larger SSWs form relatively rapidly after t
collision and across smaller length scales~except whenn is
close enough to 2!. For n@2, the length scales across whic
the largest SSWs form are relatively small, being typica
several grain diameters. Whenn→2, the length scale acros
which the largest SSWs form exceeds more than 40 g
diameters. The number of weak SSWs grows dramatically
n is lowered. Time scales and length scales associated
the formation of these weak SSWs become comparabl
the time and length scale across which the simulations h
been performed. This trend suggests the possible onset
divergence in time and length scales associated with the
mation of secondary solitary waves asn→2.
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