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Secondary solitary wave formation in systems with generalized Hertz interactions
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We consider a chain of monodisperse elastic grains of rd@liwkere the grains are barely in contact. The
grains repel upon contact via the Hertz-type potentia,s", n>2, where5=0, is the grain-grain overlap,
6=2R—(u; 11— U;), whereu; denotes the displacement of graifrom its original equilibrium position. This
being a computational study, we consiaeio be arbitrary. Our dynamical simulations build on several earlier
studies by Nesterenko, Coste, and Sen and co-workers that have shown that an impulse propagates as a solitary
wave of fixed spatial extentyp<<L(n)<1, through a chain of grains. Here, we develop on a recent study by
Manciu, Sen, and HurfPhys. Rev. 63, 016614(2001) ] that shows that colliding solitary waves in the chains
of interest spawn a well-defined hierarchy of multiple secondary solitary w@&#/s that carry~0.5% or
less of the energy of the original solitary waves. We show that the emergence of SSWs is a complex process
where nonlinear forces and the discreteness of the grains lead to the partitioning of the available energy into
hierarchies of SSWs. The process of formation of SSWs involves length scales and time scales that are
controlled by the strength of the nonlinearity in the system. To the best of our knowledge, there is no formal
theory that describes the dynamics associated with the formation of SSWs. Calculations for cases where the
Hertz-type potential can be symmetric in the overlap paramé&tér., wheres can be both positive and
negative, suggest that the formation of secondary solitary waves may be a fundamental property of certain
discrete, nonlinear systems.
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I. INTRODUCTION interest from the standpoint of nonlinear dynamics. Regard-
less of the details of the Hertz-type potential, it turns out that
The study of impulse propagation in a monodisperséan the absence of loading, any impulse, no matter how weak,
chain of coupled elastic grains, which repel upon contact viagyenerates solitary waves in the chain of elastic grelrs5).
the Hertz potential1], can exhibit interesting nonlinear dy- It is well known that continuous wave acoustic signals,
namics[2-5]. In the absence of external loading between thewhich can be obtained by sending an impulse in a chain of
grains, the grains are barely in contact. It turns out that anglastic grains under external loading, backscatter off buried
impulse propagates as a solitary wave through such a chainclusions in the chain of Hertzian graif@]. In the absence
of elastic graing2—6]. The presence of loading destroys the of such loading, solitary waves also backscatter off impuri-
solitary wave[2,3,7] and the solitary wave becomes disper-ties or inclusions in Hertzian chaifj8]. Backscattering of
sive as a function of the magnitude of load{i®. The nature solitary waves from buried inclusions in three-dimensional
of dispersion is sensitive to the competition between the am(3D) granular beds exhibit unusual behavid0]. In the
plitude of the impulse and loading. Therefore, the zerofresent study, we focus on an important idealization of the
loading case is one of the most interesting regimes in whiclproblem of backscattering of solitary waves, namely, one in
one can probe the nonlinear dynamical problem of impulsavhich two identical solitary waves traveling in opposite di-
propagation in chains of elastic beads in contact. In thigections meet one another at the geometric center of a chain
work, we consider monodisperse chains in the absence afith an odd number of grains. This problem is also identical
external loading between the grains. to that of backscattering of a solitary wave from an infinitely
It should be mentioned here that for spherical grains inmassive impurity at the center of a chain and hence may
contact and for grains with conical imperfections, the Hertzreveal insights into the study of the general problem of back-
potential is able to describe the interactioas8]. The Hertz  scattering of solitary waves from impuriti¢4].
potential describes power-law repulsion when grains are This article is arranged as follows. Section Il first presents
compressed and have no interaction otherwise. One can getite details of the model systetBec. Il A) and next summa-
eralize the Hertz potential to study cases, which may not beizes the details of the integration algorithms used to carry
easily realized in the laboratory and such an exercise caaut the calculationgSec. Il B. The studies on the crossing of
serve as a valuable tool to probe the general class of systersslitary waves in a chain of discrete grains are presented in
that interact via short-range power-law repulsive potentialsSec. Ill. In Sec. Il A we discuss our simulations that dem-
Examples of not easily realizable cases include Hertz poteronstrate the spawning of secondary solitary wageg Man-
tial with arbitrary power-law exponents and cases where theiu and co-workerg4]). This section is followed by Secs.
repulsive potential is introduced not only when the grainslli B and 11l C, where we present detailed discussions on the
squeeze against each other but also when they are separatimmation of secondary solitary wavé4] for the one-sided
i.e., a symmetric version of the Hertz potential. We call theseHertz-type potentidll] and for symmetric versions of Hertz-
cases Hertz-type potentials. These cases were not studied type potentialgsee Eqs.(1) and (2) below], respectively.
Hertz in the context of elastic grains but are nevertheless ofery little is presently known about the detailed dynamics
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leading to the formation of secondary solitary waves. Com- Initially, every grain is placed barely in touch with one
putational limitations remain an important issue when study-another such thah =2R. We call this the no-loading case.
ing the long time and spatial correlation effects that are typi-An impulse defined by an initial velocity, at timet=0 is

cally associated with the formation of these objects. In Sedinitiated at the first beadi2,3]. As the impulse propagates,

IV, we summarize the present study. one finds via numerical, experimental, and analytical studies
that a solitary wave develops in space and t[i2e6].
Il. MODEL SYSTEM AND ANALYSES We outline the procedure for constructing an approximate

solution foru;(t) in Eq. (3). With reference to earlier studies
[3—7] and the results from numerical simulations, we start by
We consider a linear system of macroscopic, monodisassuming that our system admits a solitary wave solution.
perse beads of mass and radiusR. We letE ando denote  We further assume that the displacement of individual grains
the Young’s modulus and the Poisson’s ratio, respectivelyfrom equilibrium positionu;(t) are continuous functions of
We assume that two such beads repel upon intimate contatine but are defined only at discrete positians Since the
according to Hertz's law1]. We define the overla@;;,;  solitary wave is nondispersive, we can assume that this dis-
=A—(uj,;—U;), where u; denotes the displacement of placement can be obtained from a wave-type continuous
graini from the equilibrium position and =2R— 7, n be-  function of both space and time, from the relation
ing the loading of the chaifgrain compression prior to the ]
generation of the impulgeFor spherical beads, the repulsive ~ Ui(t)=u(z ,t)=u(zi—ct)=u(a) with a=z—-ct,

A. The model system

Hertz potentia[1] is given by 4
. wherec is the constant velocity of the solitary wave.
V(8,+1)=(ED)(RI2)%6;  y=adl.y T 311410 Our exhaustive numerical ystudies on E(é) and also
=0 if & ;+1<0, other work indicate that, for a given, the shape of the

1) solitary wave in space does not depend on the solitary wave
amplitude. This implies that the functiamis described by
u(a)=Au,(a), where A represents the amplitude of the
solitary wave and where one can et u(—o)—u(+x)

) =1. The quantityy,(«) is an unknown generic function that
and the magnitude af depends upon the contact geomelry yoscribes the shape of the solitary wave and is expected to

between the beads. It turns out that typicatiyaries be- ; : :
tweenn=2 and 3[8]. We assume that the signal propagates(éepend upon the indax, which controls the stiffness of the

whereD=3({1—-¢?}/E) andn=3. If n—2, the repulsive
force approaches the harmonic limit2). In general, the
constanta depends upon the material parameté@&sand o)

! [T otential. Because the solitary wave is localized in space,
through e_ach grain at a speed that is significantly slower tha () should be necessarily zero far—o (z—oo for finite
the velocity at \.Nh'Ch sound wave propagates through eac which represents a region that the solitary wave is yet to
bead. We also ignore the energy lost to internal degrees %

freedom in h arain. i.e. we ianore restitutive | R ach and 1 fora— —« (where grains have attained a new
eedo each gran, 1.., we ignore restitutive 1osses. eSéquilibrium position after the passage of the compression

titutional loss leads to exponential attenuation of the ampli— ‘-4~ by the tsunami-like or kink solitary wava func-

tude of the propagating pulse anq can be mcorpora_ted_ Int on that respects this boundary condition and can only take
the analyses. However, our studies show that restitution

i . i I 1 I i
lossegmodeled as outlined aboydo not affect the width of termediate values between 0 and 1, can be always written
the solitary wave but simply attenuates the amplitude of a

propagating solitary wave in an exponential manner. It is Yo(@)=1(1+exp[f,(a)], with
therefore convenient to ignore such losses and treat our sys-
tem as a conservative system for our present objective, f(a)=In[ U (a)—1]. (5)

namely, for studying the dynamics of secondary solitary

waves. Due to the nonlinear nature of the repulsion between jith this notation, the solitary wave function becomes
adjacent grains, one might expect that dynamical phenomena

involving compression and decompression of grains would u(a)=A/2[¢,(a)+1] with @,(a)=tanhf,(«)/2].

be highly nonlinear in nature. Since the Hertz potential is (6)
asymmetric, additional effects occur because the grains can

lose contact for periods of time. In order to probe the effectOne can see from Egs.(4)—-(6) that du/dz,=
of nonlinearity alone, we also studied the problem with the— (1/c)du/dt|,. Substituting Eq(6) into Eq.(3), we get, for

interaction described by a symmetric Hertz potential, t=0,
V(8 iv1)=al8 " 2 mcna(A2)"?=[{en(z—2R) — ¢n(2)}"* —{¢n(2)
The equation of motion of some beadexcluding the — n(z+2R)}" /[, /dZ]
edge graingin a finite chain of Hertzian beads is given by _
=Co(n), 7
du; /dt2= A—(u—u_p]"?
ML nafla - (ui-ui-] where the left-hand side is independentzoénd the right-
—[A=(Ujsq—up]" 1. (3)  hand side is independent of, a, andA. Thus,C, should be
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independent ofz, m, a, and A, which means thaC, is a IIl. THE CROSSING OF IDENTICAL SOLITARY WAVES
constant that depends only on

. T . . L A. Secondary solitary waves
Equation(7) implies thate,(z) is antisymmetric with re- y solfaty wav

spect taz=0, which is the center of solitary wayeecall that We first summarize the study in whi¢wo solitary waves
t was set to zeno This fact, combined with the asymptotic of the same amplitude but opposite displacements are initi-
limits for ¢,(z) and Eq.(5) indicates that ated at the two ends of a chain with 499 grains. The system

is set up in such a way that the solitary waves meet one

B 2q+1 another at theenterof the central grain of the chain, i.e., at

fn(z)—qzo Caga(mMz™"™. (8 grain number 250. It should be mentioned that the results of
collision between solitary waves may be slightly different if

Since the functionp,(z) does not depend upon the soli- they do not collide at the center grain but at an arbitrary
tary wave amplitude or material parametégcept for inter- point along the Ime joining a grain cer_lter to the conta_ct point
action powem), knowledge of the coefficients,, C,, C;,  Detween two grains. Systematic studies on “off-centes.,
Cs,..., will completely solve the problem of pulse propaga- SYMmetry brokehcollisions, w_hlch are more ch_allenglng to
tion for any system supporting this type of solitary wave. |n_probe than _the current study in which only grain centers are
the absence of a simple analytical approach for infer@igg ~ iNvolved, will be carried out at a later stage. _
andCyq, 1, One must resort to numerical methods for com- An important question to address is whether at the point

o0

puting these coefficients. _of intersection, the opposing solitary waves “cancel out,”
Recall that Eq(7) implies that e, whether .the center of the central grain suffers any mo-
tion at any time. In earlier numerical analyses of limited
c={naCy(n)/m¥3(A/2)("=272, (9)  Precision carried out by Nesterenk2), it was found that the

solitary waves underwent perfect annihilation at the point of

which implies that the propagation velocity of the solitary Cr0SSing. As we shall see, improved resolution of the calcu-
wave scales with its amplitude except when-2, the har- lated data reveals that there is no motion of the central grain
monic limit, wherec becomes independent of amplitude, as@t any time and that there is significant motion of the elastic
expected. As we shall see, the velocity of the solitary wave§rains in the immediate vicinity of the central grain. Figure
become very weakly dependent nrasn— 2. 1(a) shows a drawing of the process of collision between two
The width of the solitary wavel(n), turns out to be OPPOSité propagating solitary waves in a chain of elastic
sensitive tan and to the grain diameters. When one considerd"&/ns. o _
monodisperse chaing, is the only parameter that controls !N Fig. 1(b), we present the kinetic energy versus distance
the width of the solitary waves. When—c, L(n)—1. measured in grain diamejeaind time. One can see that the
Whenn—2, L(n)—c, i.e., the system no longer accommo- grains that are adjacent to grain number 250 begin to oscil-
dates a solitary wavé2,4]. The behavior ofL(n) vs n is late or “rattle,” breaking mutual contact and reestablishing
illustrated in Fig. 1c). For the most common case with ~ contact again in the process. Such rattling eventually gives

between 2.5 and 3, the solitary waves are about three grafiS€ 10 the generation of multiple solitary waves of progres-
diameters wide. sively diminishing amplitudes, which move at progressively

slower velocities. We call these waves, “secondary” solitary
waves(SSWs.

The process of formation of SSWs involves a complex

The calculations reported in this study have been carriedequence of grain-grain compressions between two, three,
out using the sixth-order Gear predictor-corrector algorithmand perhaps more adjacent grains in certain time sequences.
[11]. In our numerical calculations we uset=1, a=1, vg These processes remain to be analytically resolved. How-
=1 (imparted initial velocity. Observe that in a system with ever, it is possible to develop some intuition about the for-
no external loading, the repulsive forces are purely nonlineamation of SSWs via the following arguments that are based
and Eq.(3) cannot be linearized. In all of our studies re- upon a simplified description of the dynamics of grains in the
ported in Secs. Il B and Il C, the chains have 999 grains andmmediate vicinity of the collision point. Assume that a soli-
the integration time step usedd$=1.3x 102 for the asym-  tary wave hits an infinitely massive central grain, say grain
metric potential andit=9.75x 10 3 for the symmetric po- numberN+1 in a 2N+1 grain chain. We recall from the
tential. The time step used was identical for studies for alldiscussion in Sec. Il A that a typical solitary wave in a chain
values ofn. In all of our calculations, the number of time of spherical grains witim= 2.5 is about three grain diameters
steps was 100000. The total energies during the runs wemgide with the bulk of its energy at the geometric center of
typically constant to an accuracy of about 0.02%. the solitary wave. As the solitary wave impinges upon the

Two identical solitary waves are created by imparting thecentral grain, thé\Nth grain would simply reflect off thel
same initial velocity(vy and—v) to the first and last grains +1)th grain. However, the grain that is two grains apart
of the chain. The symmetry with the central grain is alwaysfrom the center of theN+ 1)th grain would not suffer such
preserved, which implies that the central grain is always aa reflection after a time R/c (wherec is the speed of the
rest for all the simulations. The problem is identical to that ofentire solitary wave GrainN—1 would continue to squeeze
backscattering of a solitary wave by a grain with infinite grainN when grainN might be moving in opposition to grain
mass. N—1 with an acceleration that is controlled by the reflection

B. The integration algorithm
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¢ 2-6. In each case, the upper pafiabeled(a)] shows data

on the maximum compression between any two adjacent
grains as a function of time. The lower parn&lbeled(b)]
shows data on the velocities of the grains. It turns out that it
is difficult to meaningfully represent the data when the mag-
nitude of some dynamical variablsuch as position or ve-
locity) as a function of space and time is being shown with-
out making three-dimensional plots. It turns out that three-
dimensional plots tend to be too complicated to decipher the
detailed dynamics of the system being probed. To keep our
presentation simple, we record the minimum distance be-
tween the adjacent grains along thaxis and place circles
of appropriate diameter to indicate the window within which
(a) Point of Collision the magnitude of the grain-grain distances(piease refer to
Table ).

In a Hertzian chain with zero loading, the propagation of
the solitary wave can be tracked either by recording the
maximum velocity of the particle or the maximum compres-
sion between the grains. In our simulations, we first consider
the case where the Hertz-type potential is such that it pro-
duces a steep repulsion upon compression. To achieve such a
steep repulsion, we set=3, in other words, we make the
potential more abruptly repulsive than the usual case of
=2 for spherical grains in contact. These data are shown in
Fig. 2. It turns out that the width of the solitary wave is
slightly larger than a single grain diameter for=3 [4].

Before the collision, these points yield the line with the
negative slope at the left of each of the panels in Figs—2
6(a). In each of these figures, this negatively sloped line rep-

FIG. 1. (& The drawing shows the central part of a chain of resents théncoming solitary waveéowards the center of the
elastic beads. The center grain is dark. The velocities of the twghain as a function of time. The data reveal that the slope of
opposite propagating solitary waves are shown. The data points aie incoming wave becomes smallemsis lowered from 3.0
obtained from dynamical simulations and the continuous fits arg@g 2.1. This result implies that the solitary wave moves pro-
obtained using the solution to the equation of motion in Sen a”‘bressively slower as is lowered in magnitudgsee Eq(9)].
Manciu in Ref.[4]. (b) The plot shows kinetic energy along t2e  The part of the solitary wave that is “reflected” at the colli-
axis and time and spadé terms of grain diameter or grain num- i noint by the infinitely massive center is clearly visible to
ben alongx andy axes, respectively. Two solitary waves collide at the immediate right of the incoming solitary wave in Figs.
the center of grain number 250 in a chain of 499 grains. The emerz(a)_G(a)_ The reflected wave possesses very nearly the
gence of the first two secondary solitary waves can be seen. same magnitude as the incoming wave. Nevertheless, the
incoming and reflected waves are not perfectly symmetric

agalnst graqufl_. While one can pursue the grain dynamlc_swith respect to the normal dropped onto the time axis at the
in this fashion, it is clear that the time scales associated with . - L X :
point of collision, thereby indicating that the incoming and

the compression of grains during the propagation of a soli; . . . o
tary wave of finite size is significantly altered by the pres'_reflected solitary waves have slightly different velocities.

ence of the static central grain. Given that in a chain ofThe asymmetry can be readily seen in the F|g_a) 26. (a).
A X ) . .~ The calculations suggest that the part of the kinetic energy
grains interacting via the Hertz potential, any perturbation

: - . that is not available to the reflected solitary wave ends up
must propagate as a solitary wave, the original solitary Wav%eing used to make SSWs

must be destroyed by the central grain and will have to be The data in Figs. 2—6 clearly show that after the collision

reconstructed. This process of reconstruction of the Originatl)etween two identical solitary wavder the reflection of a

solitary wave leads to the formation of the reflected solitary ~ . .
solitary wave from an infinite central massome energy
waves and SSWs.

remains temporarily localizeéh the immediate vicinity of
the point of collision. The localization time increasesras
—2, eventually becoming divergent in the linmit=2, where
L(n)—«. This localized energy leads to the rattling of the
We study the formation and propagation of secondangrains starting from the immediate vicinity of the collision
solitary waves in monodisperse Hertzian chains. The analypoint. The process of rattling lasts across extended time and
ses are shown by recording the maximum compression bdength scales, controlled hy. The process of multiple colli-
tween any two adjacent grains and the maximum velocity ofions between the grains as the grains lose and regain contact
the grains as functions of time. The data are shown in Figsn the immediate vicinity of the collision point leads to the

\

\
)

(b) 200 Grain Number

B. Complex hierarchies of secondary solitary waves:
Asymmetric Hertz-type potentials
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FIG. 2. We show half of a chain of 999 grains. Incoming solitary 400 600 800 1000 1200
wave (negative slope line on the left of the panbhckscatters off TIME (ns)
the center of the chain and makes some 11 SSWs of decreasing
amplitudes, moving at progressively slower speedgalthe com- FIG. 3. The information represented is the same as in Figs. 2
pression pulses are characterized by smallest distance between aghd 2b) except that we study the case witl+2.5. Physicallyn
jacent grains described by, 1(t) = U;(t)|(minimum vag - When the =25 corresponds to a chain of spherical beads. Softening of the

magnitude of compression between two adjacent grains lie within @otential allows for the production of many more SSWs. Observe
chosen rangésee Table ), we record the compression with the that both forward and backward propagating SSWs form in this
appropriate symbol. Ifb) the same system is shown by plotting the system.

relative velocities of each grain with respect to the one in front

versus time. If one looks at the velocity extrema plots in cases where

formation of the secondary solitary waves. Given that typicafne one-sided Hertz potential is considered, meaning the case
solitary waves fon between 3 and 2.5 or so are about threei® Which the grains do not interact when they lose contact
grain diameters wide, three-grain motion in unison is necestFigs. 2b)—6(b)], the data reveal that it takes secondary soli-
sary for the system to construct SSWs. The evolution of suckary waves several time units to form after the collision
correlated motion depends uponand hence the formation event. This is due to the fact that the grains lose contact after
and propagation of SSWs as shown in Fig&)22(b) to  the collision and move with constant velocity between indi-
6(a), 6(b) are so stronglyn dependent. It turns out that in vidual impacts. In order to have an extremum in velodity,
softer potentials, the contact period between the grains in kast three grains should be in contact simultaneau€in
typical collision is more long lived than fon=2.5 and 3. the other hand, minima in the distances between the adjacent
Thus, systems with softer potentials yield more SS@/s6]. grains represent impacts between individual grains, regard-
Of course, while the SSWs have the same width as the notess of the position of the other grains of the chain. It is
mal solitary waves in Hertz chains discussed in Sec. Il, theievident that it takes sufficient time and sufficient number of
amplitudes are much smaller and hence they propagate mugiiain-grain collisions to make secondary solitary waves, as
slowly [see Eq(9)] compared to the amplitudes of the origi- we have emphasized above.

nal solitary waves that produce these secondary solitary In the vicinity of the collision point, the extrema appears
waves. Since the velocities of the SSWs are dependent upda be somewhat random, which suggests that the motion of
their amplitudes, they correspondingly move more slowlythe adjacent grains after the crossing of the solitary waves is
than the solitary waves. In most of our studies, we find thapresumably highly complex in nature. However, after a cer-
the energy trapped in the secondary solitary waves is abodi@in period of time, the system accommodates the available
0.5% of the original energy associated with the two collidingenergy into a hierarchy of secondary solitary waves. When a
solitary waved4]. secondary solitary wave is completely formed, the maxima
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FIG. 4. The information represented is the same as in Fi@. 2 F|G. 5. The information represented is the same as in Figs. 2
and 2b) except that we study the case with=2.3. Physicallyn  and 2b) except that we study the case witkr 2.2. Softening of the
=2.3 corresponds to a chain of spherical beads. Softening of thgotemiaﬂ allows for the formation of more dominant SSWs.
potential allows for the production of many more SSWs. Lowering
the value ofn leads to slower velocitielsee Eq(9)] of the SSWs.  plot of the minimum distances between adjacent grains ver-
sus time as shown in Figs(8)—6(a) shows linear trajecto-
are again organized on a line, whose slope is related to thées beyond some time after their formation. The tendency of
velocity of the secondary solitary wave and hence to thehe trajectories to make progressively smaller angle with re-
solitary wave energy4]. spect to the time axis reveals that the majority of the solitary

In Fig. 3, we report calculations carried out for the casewaves that form at late times move more slowly than those
n=2.5. The lower value oh implies that the Hertz-type that form at earlier times. There are cases when fairly strong
potential is less repulsive than for time=3 case. Compari- SSWs form at late timegsee Figs. &) and 3a)] and inter-
son with the data in Fig. 2 readily reveals that many moresect the slower moving weaker waves that may have formed
secondary solitary waves are formed across a long period @farlier. Our calculations appear to suggest that we find SSWs
time, which is an expected result when the repulsive potenas they are forming.
tial is softened, thereby making it easier for three grains to Continuing in the same way, one expects that the process
collide in such a way that SSWs can form more frequentlyof generation of secondary solitary waves would become
Figure 3a) shows data in which the compressions betweerprogressively more complex as decreases. Figuresal,
the adjacent grains are presented as a function of time. Fig(a), and §a) present grain-grain compression and grain ve-
ure 3b) shows the grain velocities as a function of time for locity data forn=2.3, 2.2, and 2.1, respectively. It is com-
the study shown in Fig.(8). The data in the upper and lower putationally difficult to carry out calculations in the vicinity
panels reveal interesting branching features, which indicatef the harmoniclike —2) limit. The softness of the poten-
that SSWs can be generated from SSWs themsédees for  tial leads to extended time scales across which the adjacent
example, data points at-500, grain number-20,t~700, grains are in contact, and in turn leads to extended time and
grain number-80, etc). It should be noted that SSWs, once length scales across which large numbers of SSWs can form.
formed, move at fixed velocities that depend upon their amFigure Ga) suggests that weak SSWs that propagate in the
plitudes according to Eq9). Thus, when one plots the mini- direction of the original incoming solitary wave may also be
mum distance between the adjacent grains as a function dérmed. Furthermore, after formation, these waves move ex-
time, one is tracking the propagation of a compression pulseeedingly slowly and take a relatively long time to make
and hence the emergence and the propagation of a SSW. TBSWs. In the absence of a lower limit on the energy carried
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FIG. 6. The information represented is the same as in Figs. 2 o .
and 2b) except that we study the case witk 2.1, the closest case FIG. 7. As in Fig. Za), in both the panels we show the process
to the harmonic limit f=2) that we could study in detail. With of collision of two opposite propagating solitary waves by depicting

decreasing it is evident that the SSWs tend to propagate at veryhalf ofa 999_grain chain Whe_re the g_rains interact via the symmetric
nearly the same velocity. In the limit— 2, all excitations are ex- ertz potentia[Eq. (2)] for n=3.0. Figure 7a) shows the dynam-
pected to move at the same speed. ics of SSWs while Fig. ) shows the dynamics of SASWSs. The

SSWs and SASWSs show almost identical propagation patterns
by a SSW, it is likely that secondary solitary waves continuestemming from the fact that SSWs and SASWSs form in pairs.

to spawn indefinitely from the point of crossing of two soli- : N .
where by a solitary wave one implies a compression pulse

tary waves. S S
There is no simple scaling behavior that we are able toand by an antisolitary wave one means dilation pulse.

identify that can be used to describe the hierarchy of magni- One expects cﬂfferent beh_aV|or dyrmg the cqlhspn be-
tween two opposite propagating solitary waves in this sys-

tudes of these secondary solitary waves versus the sequen[e?n Of course, as we have seen above, interactions between
of the solitary wave. If one considers Fig(a# or 4(b) and ) ! '

draws a horizontal line, starting, say, at grain number 200, i§olltary waves in these discrete systems spawn SSWs. In the

is evident that there are large amplitude solitary waves tha%ymmetnc problem, in addition to the secon(_jary solitary
form at late times. The data in Figs. 5 and 6 present ConvinC\(gvsalg\s;\,/;h(Ia:.system7atllso3s)paé/v ?S S; (:5(;ndgazy agt‘!ss)olli%r)&]waves
. . , . - . Figures =3), 8 (h=2.5), 9 h=2.3),

ing evidence of formation of large amplitude secondary soli —2.2), and 11 (=2.1) describe the dynamical behavior of

tary waves at late times, i.e., after the formation of many,[h distance between adiacent arans ver time when soli
weak SSWs. For any given value ofthere are varied time € distance between adjacent grains versus time when sofi-

scales across which SSWs can form. Formation of SSWs i%%;’l’f[“é?;s[':_:(%? 1—'(12;]11(()?;]56?33 tﬁgfltshoe“rt:g mﬁrﬁz
not a simple, scale invariant, sequential process. antisolitary wave in Figs. (b)—11(b). The magnitudes of the
displacements and velocities are qualitatively indicated in
terms of solid(for solitary waves and SSWsand open(for
antisolitary waves and SASWsircles and via their respec-

In this section, we study the process of crossing of twative gray scales. Table | also explains the magnitudes asso-
identical, opposite-propagating solitary waves in the “sym-ciated with the gray scale that has been used. The dynamical
metric Hertz-type potential” as described via ). This  evolution of maximum compression between adjacent grains
potential allows for a nonvanishing force even when twoas a function of time turns out to be a more accurate indicator
adjacent grains are not in contact with one anottmuch  of time evolution in the symmetric systems.
like in a harmonic potential except that the potential is non- It is interesting to see that in all of the Figs. 7-11, the
linean. As stated earlier, we keep the loading parameter symmetry of the potential allows the formation of forward
=0. The change in the potential allows for the propagatiorpropagating SSW6.e., moving in the same direction as the
of both solitary waves and antisolitary waviesthe system, original solitary wave that hit the infinite wall in the half

C. Complex hierarchies of secondary solitary waves:
Symmetric Hertz-type potentials

016616-7



FELICIA' S. MANCIU AND SURAJIT SEN PHYSICAL REVIEW E66, 016616 (2002

n=25
200 200
180 A 180
160 - o 160
2 140 . g 140
é 120 j g 120
& 100+ & 100
E 80 g 80
g 60 60 -
2 40 § 40 -]
20 20 -
0 0 . = P
100 400 506 €60 700 800 BOD 1000 300 400 500 600 700 800 900 1000
TIME (ns) TIME (ns)
200 200 .
180 180
o 1604 (b @ 1907 (b)
Z 140 3 140
‘% 120 & 120
i 100 L 100 j
E:J 80 i % 80 ]
@ 60 2 60
S 40 2 40 .
20 20 1
07 ‘ T s O300 " 40 500 600 700 800 900 1000
300 400 500 600 700 900 1000

1
800
TIME (ns) HIME (ns)

i . o ) o FIG. 9. The information presented is identical to that in Figs.
FIG. 8. The information presente_d |s.|dent|cal to _that in Flgs.7(a) and Tb) except thah=2.3. The data reveals that at later times
7(a) and 7b) except thatn=2.5. As in Fig. 3, softening of the o6 are phasee.g., betweer~600 and 900 ns, grain numbers
potential introduces more SSWs and SASWs in the post collisiony _ 49 4ng beyonidin which the system makes only SASWs.
era.
tween the adjacent grains as a function of time and space for
direction opposite to that of the original solitary wave that hiteaCh SS.W that we study. Acqordmg o the d|§cu35|ons_ pre-
sented in Sec. Il A, the maximum compression is a fixed

the infinite wall in the half chain To see the backward . L
propagating secondary solitary waves, the reader may nopeum_ber for a given .SS\Q/' The dahta Shqwsbthﬁt initially the
the negatively sloped lines in Figs(a7-10@). These de- Mmaximum compression between the grains behaves as a non-

) , linear function. In time, the compression pulse starts to
tailed features are smoothened and largely outside the ran Copacate at constant sneed and becomes a propadating soli-
of data shown for the case=2.1 in Fig. 11, in which the pag P propagating

X ! ) . . tary wave. We have fitted the data for each SSW with a
spatial width of the solitary wave is rather large. The rapid.,. d dent f ion th i . o
increase irL(n) betweem=2.2 andn=2.1 bears testimony time-dependent function that possesses a |inear piece in time
to the significant differences }n the two fi ures. ldentical fea-and a hyperbolic function in time. The linear piece in time is

9 9 : introduced to model the observed behavior that the compres-

tures are also visible foantisolitary waves. The number of _. , :
SSWs and SASWs generated grows rapidly to form continu-SIOn pulses must propagate at uniform speeds, if they are to

umlike structures in the graphs as»2 [see, for instance be identified with solitary waves. The formation of a com-
Figs. 10a), 10(b), 11(a) a%d Fl)lb)] The proéess of formai pression pulse, as seen in constructing solution to the equa-

tion of secondary solitary and antisolitary waves becom tion of motion of the graing4,6], is best described by a
y y y § nhf(t) function. A functional form that is consistent with

. : o al
2;?1952?2/:&?%reaﬂggtr:r?%??oin?r:r?n;z:]r:j rl?t)gt];\tgr(\j/:ﬁe properties associated with the displacement of the grains
- examinatl 9 9 : s alluded to in Eq(6) and that fits the data is

on SSWs and SASWs reveal that the dynamical behavior o
individual grains far from the collision point is, for all prac-
tical purposes, chaotic.

chain and backward propagating SSWs., moving in the

U; +1(t) - u1(t)|minimum value
:l +Pl(t_to)_Pztanﬁpg(t_to)], (10)

IV. DESCRIPTION OF A TYPICAL TRAJECTORY

OF COMPRESSION PULSE whereP,, P,, andP; are constants that vary with the order

of the solitary wave. The constaty represents the time of

In Fig. 12 we have reexamined the data describing theollision between the two solitary waves.
process of formation of the first seven SSWs for a specific Table Il presents the values of parameters as a function of
case, namelyn=2.2 case shown in Fig.(8. We have ex- the order of the solitary wave. The first five secondary soli-
tracted the points that record the maximum compression bdary waves are well formed in the data displayed. Table I

016616-8
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FIG. 10. The information presented is identical to that in Figs.  FIG. 11. The information presented is identical to that in Figs.
7(a) and qb) except thah=2.2. The resolution of our data suggests 7(a) and 7b) except thain=2.1. In the region near the collision
band formation of the SSWs and SASWs. point, the formation of SSWs and SASWs reveal different features

whereas their propagation behavior is similar at larger distances
reveals that the coefficieft,; decreases linearly for the first from the collision point.
five SSWs with the order of the SSW, thus reconfirming that
the secondary solitary waves of higher order propagate morgation at uniform speed, is the weakest. SSWs 6 and 7 do
slowly. The sixth and seventh SSWs are still in the process ofiot end up propagating at uniform speeds in Fig. 12, which is
formation att~900 and grain diameter 100 and hence theevident if one observes the fitted curves having one’s line of
coefficientsP,, P,, andPj; for these cases cannot be com- vision aligned with the data points. The coefficiéh con-
pared with those for the first five SSWs. The coefficiBat  trols rate of growth of the curves at early times and is anoma-
controls the early time dynamics of the compression pulse.
In cases where the compression pulse rapidly assumes propa- 1o

90 +

TABLE I. Magnitude of relative displacements and velocities of

80—-
grains in arbitrary units for solitary wavdsgark circleg and anti- 1

70 4

solitary wavegopen circley shown in Figs. 2—11. 2
< 60
o
[ > 1x10°t 5 50
11073 < ° < 1x10°* g ]
5x10°4 < ) < 1x1073 2 30
1x10°4 < [ < 5x10°* 20
1x10°7 < . < 1x10°* 104
O > 1x10°?t o Y o noR9% , : i
1 X 10—3 < O < 1 X 10— 1 400 500 600 700 800 900
TIME (arbitrary units)
5x 104 < @) < 1x1073
1x10°4 < o < 5%x10 4 FIG. 12. Data showing the spatiotemporal evolution of the first
1x10°7 < . < 1x10°4 seven secondary solitary waves in tive 2.2 case. The fitted curves

are discussed in the text.
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TABLE Il. Least squares fits using E(L0) for data presented in Fig. 12.

)(2 Py P, P3

Sec. Sol. 1 0.006 56 0.857 41 0.000 32 7.304 29 0.026 23 0.079 14 0.00093
Sec. Sol. 2 0.011 68 0.818 0.000 45 12.027 22 0.041 99 0.054 4~ 0.00052
Sec. Sol. 3 0.0159 0.773 03 0.000 55 18.022 1 0.059 84 0.039 35 0.0003

Sec. Sol. 4 0.03096 0.733610.000 88 28.5730& 0.11985 0.025 64 0.000 19
Sec. Sol. 5 0.08109 0.692 54 0.002 09 53.30324 0.41791 0.0132& 0.00011
Sec. Sol. 6 0.79108 0.8074 0.028 3 201.15128& 13.41451 0.0039% 0.00014
Sec. Sol. 7 0.856 45 0.780 ¥30.026 33 180.47164 11.822 19 0.004 2% 0.000 15

lously dominant for the two weakest secondary solitary(some fixed numberas functions of space and time, before
waves. These are the reasons why the coefficiBptsP,, and after the collision of two identical, opposite propagating
and P; for these two cases do not follow the trend estab-solitary waves. The grain velocities are plotted as functions

lished by the first five secondary solitary waves. of time in Figs. Zb)—6(b).
Our data indicate that after the collision between two
V. SUMMARY AND CONCLUSION identical solitary waves, a small part of the total energy in

) _ the two original solitary waves remains in the collision point.

In this paper we have presented a study of the dynamicafhis energy then starts to spread outward in both directions.
processes associated with the collision of two oppositerhese nonlinear physical systems automatically partition this
propagating solitary waves in 1D systems with the grainsenergy into a hierarchy of SSWs, which form over extended
interacting via asymmetric Hertz-tyjjé] potentials and via  time and length scales in an overall decreasing order in mag-
symmetric Hertz-type potentials. The studies have been cafjitude. Thus, larger SSWs form relatively rapidly after the
ried out under conditions of zero external loading of thecgllision and across smaller length scalezcept whem is
chains. In systems with Hertz-type potentials, it is possible tqose enough to)2 Forns2, the length scales across which
generate compressive pulses, i.e., pulses in which the dighe |argest SSWs form are relatively small, being typically
tance between the grains attain a minimum, which in turmseyeral grain diameters. When- 2, the length scale across
propagates through the chain at a constant speed. Suchygjch the largest SSWs form exceeds more than 40 grain
compression pulse turns out to be a solitary wave. The spegflameters. The number of weak SSWs grows dramatically as
depends upon the amplitude of the pulse via &.In sys- 1, is jowered. Time scales and length scales associated with
tems with asymmetric Hertz-type potentials, it is possible tohe formation of these weak SSWs become comparable to
generate both compression and dilation pulses. The dilatiofhe time and length scale across which the simulations have
pulse turns out to be an antisolitary wave. been performed. This trend suggests the possible onset of a

_ Our calculations have been carried out by numericallygivergence in time and length scales associated with the for-
integrating the equation of motion for each grain for each ofyation of secondary solitary waves @s 2.

these potentials. The computations involved were performed

with extremely high precision and were carried out over 5

decades in t_ime steps to ensure that the smallest a_md the ACKNOWLEDGMENT

slowest moving energy bundles could be detected in our
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